Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of the DNA-binding motif of the arsenic-responsive transcription factor Yap8p.

Identifieur interne : 002147 ( Main/Exploration ); précédent : 002146; suivant : 002148

Characterization of the DNA-binding motif of the arsenic-responsive transcription factor Yap8p.

Auteurs : Yulia Ilina [Suède] ; Ewa Sloma ; Ewa Maciaszczyk-Dziubinska ; Marian Novotny ; Michael Thorsen ; Robert Wysocki ; Markus J. Tamás

Source :

RBID : pubmed:18593383

Descripteurs français

English descriptors

Abstract

Saccharomyces cerevisiae uses several mechanisms for arsenic detoxification including the arsenate reductase Acr2p and the arsenite efflux protein Acr3p. ACR2 and ACR3 are transcribed in opposite directions from the same promoter and expression of these genes is regulated by the AP-1 (activator protein 1)-like transcription factor Yap8p. Yap8p has been shown to permanently associate with this promoter and to stimulate ACR2/ACR3 expression in response to arsenic. In the present study we characterized the DNA sequence that is targeted by Yap8p. We show that Yap8p binds to a pseudo-palindromic TGATTAATAATCA sequence that is related to, but distinct from, the sequence recognized by other fungal AP-1 proteins. Probing the promoter by mutational analysis, we confirm the importance of the TTAATAA core element and pin-point nucleotides that flank this element as crucial for Yap8p binding and in vivo activation of ACR3 expression. A genome-wide search for this element combined with global gene expression analysis indicates that the principal function of Yap8p is to control expression of ACR2 and ACR3. We conclude that Yap8p and other yeast AP-1 proteins require distinct DNA-binding motifs to induce gene expression and propose that this fact contributed towards a separation of function between AP-1 proteins during evolution.

DOI: 10.1042/BJ20080713
PubMed: 18593383


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of the DNA-binding motif of the arsenic-responsive transcription factor Yap8p.</title>
<author>
<name sortKey="Ilina, Yulia" sort="Ilina, Yulia" uniqKey="Ilina Y" first="Yulia" last="Ilina">Yulia Ilina</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell and Molecular Biology/Microbiology, University of Gothenburg, S-405 30 Gothenburg, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Cell and Molecular Biology/Microbiology, University of Gothenburg, S-405 30 Gothenburg</wicri:regionArea>
<wicri:noRegion>S-405 30 Gothenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sloma, Ewa" sort="Sloma, Ewa" uniqKey="Sloma E" first="Ewa" last="Sloma">Ewa Sloma</name>
</author>
<author>
<name sortKey="Maciaszczyk Dziubinska, Ewa" sort="Maciaszczyk Dziubinska, Ewa" uniqKey="Maciaszczyk Dziubinska E" first="Ewa" last="Maciaszczyk-Dziubinska">Ewa Maciaszczyk-Dziubinska</name>
</author>
<author>
<name sortKey="Novotny, Marian" sort="Novotny, Marian" uniqKey="Novotny M" first="Marian" last="Novotny">Marian Novotny</name>
</author>
<author>
<name sortKey="Thorsen, Michael" sort="Thorsen, Michael" uniqKey="Thorsen M" first="Michael" last="Thorsen">Michael Thorsen</name>
</author>
<author>
<name sortKey="Wysocki, Robert" sort="Wysocki, Robert" uniqKey="Wysocki R" first="Robert" last="Wysocki">Robert Wysocki</name>
</author>
<author>
<name sortKey="Tamas, Markus J" sort="Tamas, Markus J" uniqKey="Tamas M" first="Markus J" last="Tamás">Markus J. Tamás</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18593383</idno>
<idno type="pmid">18593383</idno>
<idno type="doi">10.1042/BJ20080713</idno>
<idno type="wicri:Area/Main/Corpus">002086</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002086</idno>
<idno type="wicri:Area/Main/Curation">002086</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002086</idno>
<idno type="wicri:Area/Main/Exploration">002086</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of the DNA-binding motif of the arsenic-responsive transcription factor Yap8p.</title>
<author>
<name sortKey="Ilina, Yulia" sort="Ilina, Yulia" uniqKey="Ilina Y" first="Yulia" last="Ilina">Yulia Ilina</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell and Molecular Biology/Microbiology, University of Gothenburg, S-405 30 Gothenburg, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Cell and Molecular Biology/Microbiology, University of Gothenburg, S-405 30 Gothenburg</wicri:regionArea>
<wicri:noRegion>S-405 30 Gothenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sloma, Ewa" sort="Sloma, Ewa" uniqKey="Sloma E" first="Ewa" last="Sloma">Ewa Sloma</name>
</author>
<author>
<name sortKey="Maciaszczyk Dziubinska, Ewa" sort="Maciaszczyk Dziubinska, Ewa" uniqKey="Maciaszczyk Dziubinska E" first="Ewa" last="Maciaszczyk-Dziubinska">Ewa Maciaszczyk-Dziubinska</name>
</author>
<author>
<name sortKey="Novotny, Marian" sort="Novotny, Marian" uniqKey="Novotny M" first="Marian" last="Novotny">Marian Novotny</name>
</author>
<author>
<name sortKey="Thorsen, Michael" sort="Thorsen, Michael" uniqKey="Thorsen M" first="Michael" last="Thorsen">Michael Thorsen</name>
</author>
<author>
<name sortKey="Wysocki, Robert" sort="Wysocki, Robert" uniqKey="Wysocki R" first="Robert" last="Wysocki">Robert Wysocki</name>
</author>
<author>
<name sortKey="Tamas, Markus J" sort="Tamas, Markus J" uniqKey="Tamas M" first="Markus J" last="Tamás">Markus J. Tamás</name>
</author>
</analytic>
<series>
<title level="j">The Biochemical journal</title>
<idno type="eISSN">1470-8728</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenic (metabolism)</term>
<term>Basic-Leucine Zipper Transcription Factors (genetics)</term>
<term>Basic-Leucine Zipper Transcription Factors (metabolism)</term>
<term>Binding Sites (MeSH)</term>
<term>DNA (metabolism)</term>
<term>DNA-Binding Proteins (genetics)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Genome, Fungal (MeSH)</term>
<term>Membrane Transport Proteins (genetics)</term>
<term>Membrane Transport Proteins (metabolism)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN (métabolisme)</term>
<term>Arsenic (métabolisme)</term>
<term>Facteurs de transcription à motif basique et à glissière à leucines (génétique)</term>
<term>Facteurs de transcription à motif basique et à glissière à leucines (métabolisme)</term>
<term>Génome fongique (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de liaison à l'ADN (génétique)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Protéines de transport membranaire (génétique)</term>
<term>Protéines de transport membranaire (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sites de fixation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Basic-Leucine Zipper Transcription Factors</term>
<term>DNA-Binding Proteins</term>
<term>Membrane Transport Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arsenic</term>
<term>Basic-Leucine Zipper Transcription Factors</term>
<term>DNA</term>
<term>DNA-Binding Proteins</term>
<term>Membrane Transport Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription à motif basique et à glissière à leucines</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines de transport membranaire</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN</term>
<term>Arsenic</term>
<term>Facteurs de transcription à motif basique et à glissière à leucines</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines de transport membranaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Genome, Fungal</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génome fongique</term>
<term>Régions promotrices (génétique)</term>
<term>Sites de fixation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Saccharomyces cerevisiae uses several mechanisms for arsenic detoxification including the arsenate reductase Acr2p and the arsenite efflux protein Acr3p. ACR2 and ACR3 are transcribed in opposite directions from the same promoter and expression of these genes is regulated by the AP-1 (activator protein 1)-like transcription factor Yap8p. Yap8p has been shown to permanently associate with this promoter and to stimulate ACR2/ACR3 expression in response to arsenic. In the present study we characterized the DNA sequence that is targeted by Yap8p. We show that Yap8p binds to a pseudo-palindromic TGATTAATAATCA sequence that is related to, but distinct from, the sequence recognized by other fungal AP-1 proteins. Probing the promoter by mutational analysis, we confirm the importance of the TTAATAA core element and pin-point nucleotides that flank this element as crucial for Yap8p binding and in vivo activation of ACR3 expression. A genome-wide search for this element combined with global gene expression analysis indicates that the principal function of Yap8p is to control expression of ACR2 and ACR3. We conclude that Yap8p and other yeast AP-1 proteins require distinct DNA-binding motifs to induce gene expression and propose that this fact contributed towards a separation of function between AP-1 proteins during evolution.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18593383</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>11</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1470-8728</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>415</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2008</Year>
<Month>Nov</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The Biochemical journal</Title>
<ISOAbbreviation>Biochem J</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of the DNA-binding motif of the arsenic-responsive transcription factor Yap8p.</ArticleTitle>
<Pagination>
<MedlinePgn>467-75</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1042/BJ20080713</ELocationID>
<Abstract>
<AbstractText>Saccharomyces cerevisiae uses several mechanisms for arsenic detoxification including the arsenate reductase Acr2p and the arsenite efflux protein Acr3p. ACR2 and ACR3 are transcribed in opposite directions from the same promoter and expression of these genes is regulated by the AP-1 (activator protein 1)-like transcription factor Yap8p. Yap8p has been shown to permanently associate with this promoter and to stimulate ACR2/ACR3 expression in response to arsenic. In the present study we characterized the DNA sequence that is targeted by Yap8p. We show that Yap8p binds to a pseudo-palindromic TGATTAATAATCA sequence that is related to, but distinct from, the sequence recognized by other fungal AP-1 proteins. Probing the promoter by mutational analysis, we confirm the importance of the TTAATAA core element and pin-point nucleotides that flank this element as crucial for Yap8p binding and in vivo activation of ACR3 expression. A genome-wide search for this element combined with global gene expression analysis indicates that the principal function of Yap8p is to control expression of ACR2 and ACR3. We conclude that Yap8p and other yeast AP-1 proteins require distinct DNA-binding motifs to induce gene expression and propose that this fact contributed towards a separation of function between AP-1 proteins during evolution.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ilina</LastName>
<ForeName>Yulia</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell and Molecular Biology/Microbiology, University of Gothenburg, S-405 30 Gothenburg, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sloma</LastName>
<ForeName>Ewa</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Maciaszczyk-Dziubinska</LastName>
<ForeName>Ewa</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Novotny</LastName>
<ForeName>Marian</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thorsen</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wysocki</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tamás</LastName>
<ForeName>Markus J</ForeName>
<Initials>MJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biochem J</MedlineTA>
<NlmUniqueID>2984726R</NlmUniqueID>
<ISSNLinking>0264-6021</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C109281">ACR3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C494591">ARR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050976">Basic-Leucine Zipper Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N712M78A8G</RegistryNumber>
<NameOfSubstance UI="D001151">Arsenic</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001151" MajorTopicYN="N">Arsenic</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050976" MajorTopicYN="N">Basic-Leucine Zipper Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="N">Genome, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18593383</ArticleId>
<ArticleId IdType="pii">BJ20080713</ArticleId>
<ArticleId IdType="doi">10.1042/BJ20080713</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Maciaszczyk Dziubinska, Ewa" sort="Maciaszczyk Dziubinska, Ewa" uniqKey="Maciaszczyk Dziubinska E" first="Ewa" last="Maciaszczyk-Dziubinska">Ewa Maciaszczyk-Dziubinska</name>
<name sortKey="Novotny, Marian" sort="Novotny, Marian" uniqKey="Novotny M" first="Marian" last="Novotny">Marian Novotny</name>
<name sortKey="Sloma, Ewa" sort="Sloma, Ewa" uniqKey="Sloma E" first="Ewa" last="Sloma">Ewa Sloma</name>
<name sortKey="Tamas, Markus J" sort="Tamas, Markus J" uniqKey="Tamas M" first="Markus J" last="Tamás">Markus J. Tamás</name>
<name sortKey="Thorsen, Michael" sort="Thorsen, Michael" uniqKey="Thorsen M" first="Michael" last="Thorsen">Michael Thorsen</name>
<name sortKey="Wysocki, Robert" sort="Wysocki, Robert" uniqKey="Wysocki R" first="Robert" last="Wysocki">Robert Wysocki</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Ilina, Yulia" sort="Ilina, Yulia" uniqKey="Ilina Y" first="Yulia" last="Ilina">Yulia Ilina</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002147 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002147 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18593383
   |texte=   Characterization of the DNA-binding motif of the arsenic-responsive transcription factor Yap8p.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18593383" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020